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A B S T R A C T

In this paper, we propose a novel method for the detection of small lesions in digital medical images. Our
approach is based on a multi-context ensemble of convolutional neural networks (CNNs), aiming at learning
different levels of image spatial context and improving detection performance. The main innovation behind the
proposed method is the use of multiple-depth CNNs, individually trained on image patches of different di-
mensions and then combined together. In this way, the final ensemble is able to find and locate abnormalities on
the images by exploiting both the local features and the surrounding context of a lesion. Experiments were
focused on two well-known medical detection problems that have been recently faced with CNNs: micro-
calcification detection on full-field digital mammograms and microaneurysm detection on ocular fundus images.
To this end, we used two publicly available datasets, INbreast and E-ophtha. Statistically significantly better
detection performance were obtained by the proposed ensemble with respect to other approaches in the lit-
erature, demonstrating its effectiveness in the detection of small abnormalities.

1. Introduction

Thanks to the recent progress in medical image modalities and in
Machine Learning techniques, systems for Computer Aided Detection
and Diagnosis (CADe, CADx) play nowadays an essential role in modern
medicine and are integral part of the clinical workflow for the detec-
tion, diagnosis, and treatment of various diseases [1,2]. These systems
help physicians in the tedious and challenging task of interpreting the
invaluable source of information being held in medical images, pre-
venting decisions to be affected by errors and improving the detection
of subtle but important changes in anatomical structures and tissues,
essential to timely treat diseases [3]. For CADe development, several
approaches have been reported in the literature of the last few decades,
ranging from conventional image analysis methodologies to Machine
Learning techniques [4–11]. Deep Learning models, and in particular
convolutional neural networks (CNNs), have recently acquired great
popularity thanks to their remarkable performance in computer vision
[12,13] and have proved to be powerful also in medical image analysis
[14–18]. The reason behind this success is the capability of learning
hierarchical feature representations directly from data, instead of using
handcrafted features based on domain-specific knowledge. The typical
CNN architecture for image processing consists of a series of layers of
convolutional filters spaced with downsampling layers. Convolutional

filters are applied to small patches of the input images (containing
candidate lesion or background) and are able to build features with
increasing relevance, from texture to higher order features like local
and global shape. The output of the CNN is typically one or more values
that represent the probability that an image patch contains a lesion or
not.

In this context, patch dimensions play an important role, especially
when the lesion is particularly small and similar to the surrounding
tissue. If the patch is defined so as to strictly contain the lesion, it may
be too small to produce a set of sufficiently discriminating representa-
tions. On the other hand, a larger patch would include much more
background which can bias the detection system to focus on unin-
teresting details contained in the background part. As a consequence,
the number of background patches erroneously detected as lesions may
be high and limit the benefits that the CADe system can provide, even
when deep learning techniques are applied [19,20].

A simple yet effective way, commonly used in Machine Learning, for
boosting the performance of poor detection models is the so called
“expert combination”: multiple detectors are trained by using different
weight settings and/or different partitions of the same data and stra-
tegically combined to solve a particular detection problem [21–25].
The rationale is that differently trained networks can learn different
representations of the training data and, in this way, can agree on
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correct predictions and make their errors in different parts of the input
space. When combined together, such diversity enforces the correct
predictions and reduces the errors, minimizing the risk due to poor
model selection. This approach is also useful in medical image analysis
field, where ensembles of CNNs have been used to solve many medical
image analysis tasks [26–28].

In this paper, we present an approach for the automated detection of
small lesions in medical images, consisting of an ensemble of CNNs,
each one specifically designed to learn a different view of the same
lesion. Patches of different dimensions, centered at the same detection
location, are extracted to separately train different CNNs, whose net-
work architectures are tailored to the dimensions of the input samples.
The idea is that, starting from image patches small enough to entirely
contain the lesion to be detected, the size of the neighbourhood is
progressively enlarged, and the depth of the network is increased at the
same time. In this way, shallower networks become specialized in
learning local image features, whereas deeper ones are well suited to
learn patterns of the contextual background tissues. Once trained, the
detectors are combined together to obtain a final ensemble that can
effectively detect abnormalities with a substantial reduction of false
positive regions (thanks to the diversity provided by the different spa-
tial context learned by each network).

Recently, few other works have tried to add contextual information
into the training phase. [29] proposed a two-pathway CNN architecture
for brain tumour segmentation. Similarly, [30] employed a dual
pathway architecture that processes 3-D input images at multiple scales
simultaneously for accurate brain lesion segmentation. [31] proposed a
context-sensitive DNN for microcalcification detection by merging, at
training time, features coming from two different subnetworks.

Our approach stands out from these works since the networks are
separately trained and the probability scores are merged at inference
time, by allowing to focus on more different portions of the lesion
background, without requiring a high computational burden and re-
sulting in a more discriminating power. To evaluate the performance of
the proposed approach, we considered two well-known medical de-
tection problems that have also been recently addressed with CNNs
[32–34]. In particular, we focused on microcalcification detection on
digital mammograms and on microaneurysm detection on digital
fundus images. In both cases, the task of accurately identifying lesions
is a main challenge, due to the appearance of the lesions and to the
heterogeneity of their contextual backgrounds.

The rest of the paper is organised as follows. We start with a brief
overview of convolutional neural networks in Section 2, whereas Sec-
tion 3 introduces the underlying concepts of the proposed method along
with a detailed characterization of the proposed architecture. Section 4
reports the experimental analysis, followed by results in Section 5. Fi-
nally, Section 6 ends the paper with discussion and conclusions.

2. Convolutional neural networks

In this work, the problem of detecting small lesions in medical
images has been formulated in terms of a pixel-based two-class classi-
fication problem. To solve the classification task, we employed CNNs
[35], a particular kind of deep neural networks well suited to work with
images as they directly take in input 2D or 3D structures, preserving
configuration information of the data. CNNs are based on three main
architectural ideas: local receptive fields, weight sharing, and sub-
sampling in the spatial domain. A typical CNN principally consists of
three types of layers: (i) convolutional layers, (ii) sub-sampling layers,
and (iii) output layers, that are arranged in a feed-forward structure
[12]. Convolutional layers are responsible for detecting local features in
all locations of the input images. To detect local structures, each node in
a convolutional layer is connected to only a small subset of spatially
connected neurons in the input image channels, called receptive field.
Furthermore, to enable the search for the same local feature, connection
weights are shared between all the nodes in the convolutional layers;

each set of shared weights is called convolutional kernel. For each
convolutional layer, a set of convolutional kernels = …W W W W{ , , , }n1 2 is
convolved with the input image X, and biases = …B b b b{ , , , }n1 2 are
added, so as to generate a new feature map Xi through an element-wise
non-linear transform σ:

= + = …X W b( X ) i 1, , ni i i (1)

This approach makes the network equivariant with respect to input
translations and drastically reduces the number of parameters to be
learned. Each sequence of convolutional layers is followed by max
pooling layers, that are applied to reduce the size of feature maps by
selecting the maximum value in local neighbourhoods. Like local con-
nectivity, the pooling operation reduces the resolution w.r.t. previous
layer and provides for translational invariance. At the end of the con-
volutional stream of the network, a number of consecutive fully con-
nected layers is added, and the class distribution over the classes is
generated by feeding them through an activation function.

The training procedure consists of an iterative propagation of
samples through the network and modification of its weights, which are
properly initialized [36]. CNNs are trained using the back-propagation
algorithm by minimizing a given cost function with respect to the
weights w. For a dataset D, the optimization objective is the average
loss over all |D| data instances:
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Since D can be very large, a stochastic approximation of this objective is
used, where the cost over the entire training set is approximated with
the cost over mini-batches of data. Drawing a mini-batch of N < < |D|
instances the optimization function becomes:
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The stochastic gradient descent updates the weights w by a linear
combination of the negative gradient Lw and the previous weight
update Vt according to the following formula:

=+V µV L w( )t t t1 (4)

where μ and α are hyperparameters chosen for the learning procedure.
The coefficient α is the learning rate, controlling the size of the weight
updates, whereas μ is the momentum, that indicates the contribution of
the previous weight update in the current iteration. In order to prevent
overfitting, some regularization technique are applied during the
training procedure, being dropout [37] the most used. With dropout a
subset of network units is drawn at random and temporarily “switched
off” during training. When in this state, those units do not propagate
signals when a sample is presented, nor participate in the process of
error backpropagation.

3. Multi-context CNN ensemble

In this section, we present our multi-context CNN ensemble for the
detection of small lesions in medical images. Specifically, the proposed
ensemble consists of K different CNNs that are meant to focus on dif-
ferent spatial context of the images and thus to specialize both on local
features and on contextual ones. To this end, each network of the en-
semble is trained by using image patches of different size, aiming to
capture the spatial context around the same detection location.
Furthermore, according to the image patch dimensions, the K network
architectures are set to different levels of depth, with the aim of using
deeper, hence more discriminating, networks to manage larger image
windows.

The size m of the smallest patches used in the ensemble is chosen to
entirely contain a single lesion, and then it is progressively enlarged to
include larger image portions, up to a dimension that is still
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representative of the context around the lesion. Similarly, the network
architecture is set to a baseline configuration, and then its depth is
increased as the image size grows. The baseline configuration is in-
spired by the VGG-Net [38], and it is defined as two blocks of two
convolutional layers, interlaced by a ReLU activation function and
followed by a max pooling layer. We named each of these blocks in-
cremental block; the word incremental indicating they are added to the
stack of layers in order to define deeper architectures. More details of
the structure of an incremental block are given in Table 1. Following
the design approach defined by the VGG-Net [38], small 3× 3 kernels
are used in each block, since they are faster to convolve with and
contain less weights. For the same purpose of decreasing the amount of
computations, data reduction layers need to be set to steadily decrease
the spatial resolution of the input feature maps. Let sin be the size of an
image patch in input to a convolutional layer or a max pooling layer, we
know that its output dimensions can be expressed as:

= + +s s 2*pad kernel
stride

1out
in

(5)

where kernel indicates the size of the filter, pad specifies the padding
size, and stride the intervals at which the filter is applied. We set the
stride of convolutional layers equal to 1, by fixing instead the stride of
max pooling layers equal to 2 (see Table 1). As a result, the image
patches are halved after each passage through an incremental block. As
a consequence, we decided to progressively double the size of the input
patches every time we added an incremental block to the baseline
network architecture. To summarize, we can say that the proposed
ensemble of CNNs consists of K different networks, each one trained on
image patches of size = ×s m m{2 2 }i i1 1 and built with d= i+1 in-
cremental blocks, ∀i=1, 2, …, K.

Each of the K networks ends with a classification block, i.e., with
three fully connected layers intertwined with two dropout layers. At the
end, a softmax function is applied to the two-output neurons to gen-
erate a two-value probability vector associated to each prediction. More
details on the classification block are reported in Table 2. The K nets are
individually trained and the output values Yi, ∀ i=1, …, K of the K
CNNs are merged together at inference time to aggregate the multi-level
contextual information for the final classification. In particular, the
probability values are averaged, resulting in a single probability vector

=Y Y Y{ , }p nen en, en, associated to each patch, stating the final decision
about that sample:
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4. Experiments

We proved the effectiveness of the proposed approach on two well-
known problems in medical image analysis: (i) the detection of mi-
crocalcifications on full field digital mammograms, and (ii) the detec-
tion of mycroaneurysms on digital ocular fundus images.

Microcalcifications (MCs) are one of the main symptoms of breast
cancer and detecting them on mammograms is one of the most reliable
way to identify the presence of breast cancer at an early stage [39]. MCs
appear on mammograms (see some examples in Fig. 1(a–c)) as small
granular bright spots of size between 0.1 mm and 1mm, and they may
occur alone or in clusters as a group of MCs closely distributed within a
spatial region [40]. The task of accurately identifying individual MCs is
very challenging due to their small dimensions and because of the in-
homogeneity of the surrounding breast tissue. Furthermore, mammo-
grams contain a variety of linear structures (e.g. vessels, ducts, etc.)
that, together with MC-like noise patterns and artefacts, are very similar
to MCs in size and shape, thus contributing to the occurrence of false
positives in the MC-detection task [41].

Microaneurysms (MAs) are one of the first sign of diabetic retino-
pathy and the most common cause of blindness and vision loss in the
working population of the western world, as stated by the World Health
Organization in 2016. The screening programs use non mydriatic di-
gital colour fundus cameras to acquire photographs of the retina (see
some examples in Fig. 1(d–f)), and MAs detection represents a critical
step in the process of early diagnosis and timely treatment of the disease
MAs are described as isolated, small, round objects, of 10-100 μm of
diameter, but sometimes they appear in combination with vessels.
Retinal vessels, together with dot-hemorrhages and some other objects
like the small and round spots resulting from the crossing of thin blood
vessels, make MAs hard to distinguish

4.1. Datasets

4.1.1. MCs detection
We used the publicly available INbreast database [42]. This data-

base was acquired from the Breast Centre of the university hospital of
Porto, between April 2008 and July 2010, by using a MammoNovation
Siemens full field digital acquisition system, equipped with a solid-state
detector of amorphous selenium. The acquired images are matrices of
3328×4084 or 2560× 3328 pixels, with a pixel-size of 70 μm and a
14-bit contrast resolution. The database has a total of 410 images,
amounting to 115 cases, from which 90 cases are from women with
both breasts, and 25 are from mastectomy patients. Several types of
lesions such as masses, calcifications, and architectural distortions are
included. Among the 410 images, calcifications can be found in 301
images, and a total of 6,880 individual calcifications have been iden-
tified. All mammograms were manually annotated and segmented by
expert radiologists, and ground-truth data are provided.

In our experiments, all the images were used and image patches
were extracted from the mammograms to train the CNNs. Each patch
was labeled as positive or negative according to the information pro-
vided by the ground-truth. MC patches were extracted by centering the
windows on the annotated MC centers, whereas background tissue
patches were extracted from the remaining regions of the images with
overlapping sliding windows. According to the multi-patch criterion,
different subwindows of different size were extracted around the same
center, by yielding 5628 positive samples and 26,887,769 negative
ones. The resulting patches were used to train and test the proposed
detection system.

4.1.2. MAs detection
E-ophtha is a public database of colour fundus images designed for

scientific research in Diabetic Retinopathy [43]. It contains 233 healthy
images and 148 images with microaneurysms or small hemorrhages
which are manually annotated by expert ophthalmologists. The image

Table 1
Details of the incremental block.

Layer Type Output size Kernel size Stride Padding

1 Convolutional 32×m×m 3×3 1 1
2 ReLU 32×m×m
3 Convolutional 32×m×m 3×3 1 1
4 ReLU 32×m×m
5 Max pooling × ×32 m m

2 2
2×2 2 1

Table 2
Details of the classification block.

Layer Type Output size Kernel size Rate

1 Fully connected 256 1×1
2 Dropout 256 0.5
3 Fully connected 256 1×1
4 Dropout 256 0.5
5 Fully connected 2 1×1
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matrices range from 1440×960 to 2544×1696 pixels with a 45° field
of view (FOV), a pixel size of 7μm and JPEG format.

Retinal colour fundus images are RGB images, but experimental
studies have observed that the blue channel is often characterized by
low contrast and shadows and does not contain any information,
whereas the red one is generally noisy or saturated. Therefore, we
decided to extract the green channel and to work with grayscale
images. Also in this case image patches were generated and associated
to a class label according to the information provided by the ground-
truth data. For the same location different image patches were ex-
tracted according to the multi-patch requirement, by yielding 1306

positive samples and 6,159,906 negative ones.

4.2. Architecture details

Our model consists of a multiple pathway of K specialized CNNs,
each learning a different context extracted from an increasing area
centered on the lesion. The choice of the size m is made in order to
guarantee that input patches entirely contain at least the smallest le-
sions. Considering the size of MCs (0.1–1mm) and MAs (10–100 μm)
and the image spatial resolution, we found that in both tasks a patch
size of m=12 pixels was sufficient to cover the extent of the smallest

Fig. 1. Some examples of images from (a–c) INbreast and (d–f) E-ophtha respectively.

Fig. 2. Details of the proposed architecture.
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lesions and to focus on their fine details. Then, we enlarged the input
size for the other CNNs to capture larger lesions as well as their back-
ground context, by doubling the patch dimensions up to 96 pixels.
Larger image portions were not considered since they were not re-
presentative of the background context of the lesions and to maintain a
reasonable processing time (see Section 5 and Table 11).

In summary, the patch size ranges from 12×12 to 96× 96, re-
sulting in a final ensemble made up of K=4 networks, the first ones
more focused on learning details of the lesions and the others on
learning background patterns.

The final architecture of the ensemble along with the dimension
details of each CNNs are illustrated in Fig. 2.

4.3. Training parameters

According to the number of extracted patches, both MCs and MAs
detection are heavily unbalanced classification problems. To avoid the
classifiers being overwhelmed by the majority class and misclassify the
samples of the minority class, we applied data augmentation, by re-
storing the balance between positive and negative samples(see Table 3).
Thus, all the CNNs of the ensemble were trained on a perfectly balanced
dataset. Augmentation of the positive class was performed by randomly
flipping the patches horizontally and vertically and by randomly ro-
tating the patches 90°, 180°, and 270°. Once generated, image patches
were standardized by mean subtraction and normalization to unit
variance [44].

As to weight initialization and training parameters, all the CNNs of
the ensemble were treated in the same way. For all weights in all the
layers we used Xavier initialization [36], while each CNN was opti-
mized to minimize the Softmax loss function by using backpropagation
and Mini-Batch Stochastic Gradient Descent. The mini-batch size was of
32 samples and in each mini-batch positive and negative samples were
balanced. The learning rate was set to the initial value of 10−3 and
decreased during training by a factor of 10 every 6 epochs. The learning
was stopped after 30 epochs. Momentum and weight decay were set
respectively to 0.9 and 5×10−4. The number of feature maps was set
to 32, whereas dropout was performed with a probability of 0.5 in-
dicating that, at each training stage, half of the units coming from the
previous layer were ignored in the training of the successive layer. The
proposed architecture was implemented with a modified version of the
Caffe framework [45], and the experiments were conducted on a ma-
chine with 2 Intel Xeon e5-2609, 256 GB of RAM and 2 GPU NVIDIA
Titan Xp.

5. Results

To evaluate the performance of the proposed ensemble, we applied
an image-based 2-fold cross validation for all the experiments. In each
cross validation step, each detector was trained on the 50% of the
images and tested on the other 50%. When splitting the data into
training and test sets, the patches belonging to the same image were
assigned to the same set.

The detectors were evaluated in terms of Receiver Operating
Characteristics (ROC) curve by plotting True Positive Rate (TPR)
against False Positive Rate (FPR) for a series of thresholds on the de-
tector output associated to each sample. It is worth remarking that the

ROC curves were calculated using the image patches. The number of
negative and positive patches tested are the same of the original dataset
as reported in Table 3 (the two leftmost columns). Furthermore, the
mean sensitivity of the ROC curve in the specificity range on a loga-
rithmic scale was calculated and compared. The mean sensitivity [33] is
defined as:

=S a b
b a

s f
f

¯ ( , ) 1
ln( ) ln( )

( ) df
a

b

(7)

where a and b are the lower and upper bound of the false positive
fraction and s(f) is the sensitivity at the false positive fraction f. The
range a b[ , ] in Eq. (7) was set to [10 , 10 ]6 1 corresponding to a wide
range of operating points that are close to practical application re-
quirements of CADe systems for both the problems under consideration
[46].

For the experimental evaluation, we firstly investigated the perfor-
mance of the standalone CNNs, by varying the input patch size along
with the network depth. In Table 4, the performance of the individually
trained CNNs for growing values of patch size and network depth are
reported, for MCs and MAs respectively. We can see that using larger
patches with a deeper network is initially beneficial to improve detec-
tion performance for both MAs and MCs cases. The mean sensitivity
increases from 76.30% of CNN1 to 77.45% of CNN3 for MCs, and from
70.11% of CNN1 to 77.82% of CNN2 for MAs. However, in both cases,
increasing the size of the image window stops to be beneficial and
performance decreases. The mean sensitivity reduced from 77.45% of
CNN3 to 75.83% of CNN4 in the case of MCs and from 77.82% of CNN2
to 74.64% of CNN4 for MAs.

Furthermore, to understand how joint predictions of the individual
pathways affects the performance, we also report in Table 5 the results
obtained by combining the single CNNs. We can see that detection
performance increases each time we add a new CNN to the ensemble,
obtaining the best performance measure (indicated in bold) when all
the networks are used. The proposed full architecture achieved a mean
sensitivity of 83.54% and 81.62% respectively for MCs and MAs. It is
worth noting that, even when a single CNN does not perform very well
(as in the extreme cases of patch size 12 and 96) they still give a con-
tribution when added to the ensemble.

Starting from this observation, we decided to train a CNN5 with
patch size 192 and d=6 in order to evaluate its contribution to the
ensemble. Results are reported in Table 6. We can see that, for both MCs
and MAs, the standalone CNN5 achieved lower performance than the
CNN4, but in this case even when including CNN5 in the ensemble
performance does not improve. This shows how adding background
portions that are not representative of the lesion context does not give
any significant contribution to the ensemble.

For the sake of completeness, we also investigated the effect on the
proposed approach of different combination methods in addition to the
mean rule. In particular, we combined the probability values of the
standalone CNNs with the following rules [21]: (i) trimmed mean; (ii)
maximum; (iii) minimum; and (iv) majority voting. Results are reported
in Table 7 showing that the mean rule gave the best performance (in
bold) in both cases.

To evaluate the performance of the proposed approach with respect
to the literature, we compared our ensemble method with the deep
network proposed by Wang et al. [31], a context-sensitive deep learning

Table 3
Distribution of positive and negative samples before and after data augmenta-
tion for INbreast and E-ophtha datasets.

Dataset Original Augmented

pos neg pos neg

INbreast 5628 26,887,769 26,887,769 26,877,769
E-ophtha 1306 6,159,906 6,159,906 6,159,906

Table 4
Results of mean MC and MA detection sensitivity S̄ for standalone CNNs.

Method Patch size d S̄MC S̄MA

CNN1 12×12 2 76.30 70.11
CNN2 24×24 3 76.90 77.82
CNN3 48×48 4 77.45 76.29
CNN4 96×96 5 75.83 74.64
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approach for MCs detection. To this end, we faithfully reproduced the
network architecture and the training settings reported in [31] and
evaluated its performance in terms of mean sensitivity both for MCs and
MAs detection. For the sake of completeness, we also compared these
two approaches with the best single CNNs, that are CNN3 for MCs and
CNN2 for MAs. Statistical comparisons were performed by means of
bootstrapping [47]. On the test set, average ROC curves were calculated
over 1000 bootstraps and are reported in Fig. 3. In all test cases, the
ROC curves of the proposed context-sensitive ensemble were notably
higher in the FPR range of major interest with respect to those obtained
from the other approaches.

Additionally, the mean sensitivity was calculated for each bootstrap
and p-values were computed for testing significance. The statistical
significance level was chosen as α=0.05, but performance differences
were considered statistically significant if p < 0.025 due to the
Bonferroni correction1 [48]. Comparative results are reported in Tables
8 and 9 and statistically significant peformance are indicated in bold.
Results of the proposed architecture were statistically significantly
better than the other considered approaches. The improvements in
mean sensitivity were large with respect to both the context-sensitive
approach of [31], +2.70% for MCs detection and +8.43% for MAs, and
the best standalone CNN, +6.09% and +3.8% respectively for MCs and
MAs, revealing to be significantly better in detecting lesions.

To assess the performance on the whole image, we calculated the
lesion-based free receiver operating characteristic (FROC) curve that
reports the true positive fraction of the detected lesions versus the
average number of false positives per image (FPpI) when varying the
decision threshold over the operating range. Being r the radius of a
lesion in the ground truth, a detected region is considered as a TP if its
distance to the centre of a true lesion is no larger than r; otherwise it is
counted as an FP. To easily compare the different methods, the detec-
tion performance was summarized in a single score (FROC score) ob-
tained by averaging the sensitivity values corresponding to the FPpI
rates values of 1/8, 1/4, 1/2, 1, 2, 4, and 8, as described in [49]. Lesion-
based FROC curves evaluated on the test set are shown in Fig. 4 for MCs
and MAs detection and the relative FROC scores are reported in
Table 10 (best values in bold). In all cases, the performance of the
proposed ensemble is notably higher than the others for both tasks,
proving the effectiveness of the proposed method also when applied on
the whole image.

Finally, per-image processing times are reported in Table 11. As
expected, the time needed for testing a single image increases with the
input size, being strictly related to the network depth. The testing time
of the proposed approach is evaluated as the sum of the processing time
of the 4 standalone CNNs,2 resulting to be lower than the time required

by [31]. It is also worth noting that CNN5 required a per-image pro-
cessing time much higher than the proposed approach. Thus, if included
in the ensemble, it would make the processing time no longer in line
with the requirements of a medical application.

6. Discussion and conclusions

In this paper, we proposed a novel and effective method for the
detection of small lesions in digital medical images, as a result of an
analysis of the limitations of the current methods proposed for similar
applications.

First, we investigated the performance of CNNs when using larger
image windows during the training phase together with deeper archi-
tecture. The obtained results indicate that using small patches, hence
focusing only on the local image characteristic of a lesion, is not suf-
ficient to obtain high detection performance. This is because, ignoring
the context in which the lesions are in, the detector response is sus-
ceptible to all the lesion-like image patterns that lies in the background,
affecting the overall performance of the classifier. However, even too
large image patches are not sufficient to obtain high level performance,
being the network not able to capture the fine details of the lesions and
to recognize them in their broad spectrum of appearance. Moreover,
deeper networks are more difficult to train, due to the vanishing signals
and the internal covariate phenomenon.

To include both local and larger contextual information, we decided
to combine at inference time the predictions coming from the in-
dividual networks, resulting in the proposed multi-context CNN en-
semble. The ensemble combines the predictions of 4 different networks,
each one with a different level of depth and processing at training time
input patches with a different level of context-information. The devised
approach achieved statistically significantly more accurate results in
detecting small lesions when compared to standalone CNNs, and it
additionally outperformed the context-sensitive approach proposed by
[31] for similar tasks.

The obtained results proved the effectiveness of using different

Table 5
Results of mean MC and MA detection sensitivity S̄ for combined CNNs.

Method Patch size d S̄MC S̄MA

CNN1+CNN2 12+24 2+3 79.51 79.04
CNN1+CNN2+CNN3 12+24+48 2+3+4 81.39 81.12
CNN1+CNN2+CNN3+CNN4 12+24+48+96 2+3+4+5 83.54 81.62

Table 6
Results of mean MC and MA detection sensitivity S̄ when considering CNN5.

Method Patch size d S̄MC S̄MA

CNN5 192×192 6 74.24 72.77
CNN1+CNN2+CNN3+CNN4+CNN5 12+24+48+96+192 2+3+4+5+6 83.34 81.41

Table 7
Results of MC and MA detection sensitivity S̄ for combined CNNs according to
different combination rules.

CNN1+CNN2+CNN3+CNN4 S̄MC S̄MA

Mean 83.54 81.62
Trimmed mean 81.92 80.57
Max 77.51 78.89
Min 81.27 78.12
Majority voting 81.25 79.30

1 the significance level was obtained as α divided by the number of com-
parisons.

2 This assumption refers to the worst case in which only one processing node
(footnote continued)
is available and thus the 4 CNNs must be activated sequentially.
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pathways, where each path specializes in capturing information at
different context levels so that the system is able to closely learn the
global contextual features as well as the local detailed features. The
local appearance of the lesions and their underlying characteristics

were captured, with different specificity levels, by the first two path-
ways, while higher level features, such as the nature of the tissues of the
lesions are inserted in, were learned by the deeper paths. As a result, we
obtained a set of specialized and complementary detectors (based on
different representations derived from the different contexts) whose
combination led to a final system that is able to overcome the limita-
tions of single-pathway networks, with a clear improvement of the
discriminating power. Moreover, the reported results suggest that the
approach of training the networks separately and averaging the outputs
at inference time is effective to get over the optimization difficulties
that might occur in the case of joint training. We think that, when the
multiple pathways are simultaneously trained as in [31], the detector
might find it difficult during the learning phase to come across the co-
adaption between the local and the global pathways. Finally, we can
observe that the very good performance obtained for both MCs and MAs
detection showed that the proposed approach is not designed for a
specific task, thus making it suitable for other detection tasks.

Starting from the last remark, our future work will be devoted to
extend the proposed method to similar CADe problems as well as to
explore other network architectures and combining methods.
Furthermore, we believe that the improvements in detection perfor-
mance obtained in this work can be transferred to full CAD schemes,
including diagnosis modules which can determine the nature of the

Fig. 3. Average ROC curves obtained from 1000 bootstrap iterations for (a) INbreast dataset and (b) E-ophtha. Confidence bands indicate 95% confidence intervals
along the TPR axis.

Table 8
Comparative results of mean MC detection sensitivity S̄.

Method S̄ Compared to Difference p-Value

CNN3 77.45 – – –
Wang et al. 80.84 – – –
Proposed approach 83.54 CNN3 +6.09 < 0.025

Wang et al. +2.7 < 0.025

Table 9
Comparative results of mean MA detection sensitivity S̄.

Method S̄ Compared to Difference p-value

CNN2 77.82 – – –
Wang et al. 73.19 – – –
Proposed approach 81.62 CNN2 +3.8 < 0.025

Wang et al. +8.43 < 0.025

Fig. 4. FROC curves for (a) INbreast dataset and (b) E-ophtha.
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detected lesions. These systems could be implemented in a routine
clinical setting, being very useful to the clinicians not only for detecting
suspect cases, but also for assisting in the diagnostic decision as a
second reading.
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